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Abstract

We present practical recommendations for improving the
clarity, transparency, and usefulness of many biometric pa-
pers. Several of the recommendations can be enabled by
preparing a publicly available library of state of the art Re-
ceiver Operating Characteristics (ROCs). We propose such
a library and invite suggestions on its details.

1. Introduction

This paper makes specific, practical recommendations
aimed toward improving the clarity, transparency, and use-
fulness of biometric papers. We propose good practices on
how to make biometric research reproducible and how to
facilitate objective comparison of results from independent
studies — a key component of reproducibility. To support
these practices, we propose construction of a publicly avail-
able library of state-of-the-art Receiver Operating Charac-
teristics.

While in proof, we discovered a recent paper by Jain et
al., ”Guidelines for Best Practices in Biometrics Research”
[14]; we recommend reading that paper in conjunction with
this paper. Jain et al. focus on planning research; we fo-
cus on presentation of results; good research papers require
both.

The topic of reproducible research has received consid-
erable attention in recent years. In particular, Vanderwalle
et. al. [35] open their paper with the statement:

Have you ever tried to reproduce the results pre-
sented in a research paper? For many of our cur-
rent publications, this would unfortunately be a
challenging task.

Vandewalle et. al were correct in 2009 and it is unfortunate
that they are still correct — we have not made that much
progress.

The principle of reproducibility is a cornerstone of the
scientific method and the capability to make meaningful
comparisons across time and space is key to reproducibility.
Data analysis, and more generally, scientific claims, should
be published with their data and methods of derivation so
that others may verify the findings and build upon them. If
a result cannot be reproduced, it is at best incomplete and
at worst “not even wrong” (a phrase often attributed to No-
bel Laureate Wolfgang Pauli) in the sense that it cannot be
falsified by experiment.

Attention has already been brought to the problem of ir-
reproducibility in a range of fields outside of biometrics.
There are reports that only 10% to 20% of papers in biotech-
nology are reproducible [5]. Nature keeps a running tally
of high-profile failures in the reliability and reproducibil-
ity of published research [22] . In 2012, Nobel Laureate
Daniel Kahneman expressed concern in a public letter that
the field of ”priming”, an important human factors idea in
biometrics, may be poorly founded after the results of sev-
eral high-profile experiments could not be replicated [6].

Lack of reproducibility does not in itself imply that the
research is fraudulent or the methodology is flawed. The
problem is often that the publications do not enable easy
replication of results that would enable the self-correcting
aspects of the scientific method to operate efficiently. As a
consequence, bad science can hide amongst the good with-
out any way to differentiate the two.

Although in principle the scientific process is self-
correcting, certain practical considerations can make that
difficult at times. For example:

e Journals and funding agencies tend to place greater
value on original research than on replication of ex-
isting results.

e Experimental methods and analyses are becoming in-
creasingly complex, making them more difficult to
replicate.

e Important experimental factors may not be under the



full control of the researchers - original or others.

e Restrictions on the original data or experimental tools
may hamper or disallow distribution (e.g. privacy con-
cerns, intellectual property issues).

e A failed replication attempt leaves us in a quandary:
were the prior results in error, or did the replication
fail in some way.

Although a positive correlation between citation count
and ease of reproducibility has been noted [35], the long
term advantages of reproducible research are to the commu-
nity. Authors, particularly newer ones, should have a vested
interest in adopting our recommendations since robust and
transparent research is more likely to be impactful and lead
to career advancement. Furthermore, the peer-review pro-
cess should place the necessary emphasis on ensuring all
data and tools used in a publication are freely available
whenever possible.

An additional goal of the our proposals regarding Re-
ceiver Operating Characteristic (ROC) plots[1] is to help
authors avoid attempted publication of poor variants of a
common form of paper that can be summarized as “Yet
Another Recognition Algorithm” (YARA). A key failure
of many such papers is the comparison of results against
“straw man” examples using small datasets. In iris a com-
mon straw-man is the Libor Masek algorithm constructed
by an undergraduate student more than a decade ago [19].
We do not wish to denigrate Masek’s accomplishment. It
was a significant addition to the biometric literature. Like-
wise, the Model T was a significant addition to automobile
technology. However, if we were writing a paper on an im-
provement to automobile technology, we would not use the
Model T (let alone a homemade copy) as the standard for
comparison. We would use a modern, state of the practice
automobile. Likewise, if we were writing a paper on iris
recognition, we would use a modern, state of the practice
algorithm as the standard for comparison.

2. Proposals for Paper Improvement

Our recommendations to improve the understandability,
relevance and usefulness of biometrics papers are enumer-
ated below. In advocating for these, we acknowledge that
there will be niche cases where it is proper not to implement
particular practices. In such cases, we recommend that au-
thors explain their rationale for doing so in their paper.

1. Any paper discussing the effectiveness of a modal-
ity, algorithm, or process of data acquisition should
include a receiver operating characteristic plot
(ROC) [1] or detection error trade-off (DET) plot
[18]. The paper should include

e plots representing the various modalities, sen-
sors, recognition algorithms and training data un-

der consideration;

e plots comparing the work with the best state of
the practice, including commercial efforts.

The classic ROC plot shows true accept rate (TAR)
- essentially the probability of true detections (hits) -
on the vertical axis against false accept rate (FAR) -
the probability of false detections (false alarms) on the
horizontal axis. This is done parametrically for any
real threshold ¢, an accept being declared when the
comparison of two samples yielded a similarity score
greater than or equal to ¢.

The ROC plot originated in radar work during WWII
and much of the early literature on the topic resides in
unpublished reports, e.g. [29], rather than academic
journals. The ideas filtered out into the broader com-
munity after the war[17]. The psychology community
adapted the concept in the 1960’s [31, 32]. Other uses
followed: medical diagnostics [20] , electronic signal
detectors [34]. The speaker verification community’s
adoption of the concept in the 1980’s [21] may be the
first biometric use.

The biometric community uses several ROC variants
obtained by plotting error rate or (1- error rate) for
false rejections and by using linear, log and other
transformations of the axes. In particular, the speaker
recognition community found it enlightening to plot
errors against errors, (false reject rate, FRR = 1 -
TAR vs. FAR) developing the Detection Error Trade-
off (DET) characteristic. Moreover they plotted on a
normal deviate scale to afford straight line plots for
Normal genuine and impostor scores. [18]. In many
modalities, algorithms do not produce normally dis-
tributed scores and researchers may find it expedient
to use logarithmic scales[16] instead. For all of these,
the important point is that ROC/DET plots encapsu-
late the relationship between hits and false alarms as a
function of this threshold in a clear and concise way.
As such it is of primary importance to owners of bio-
metric systems in that it allows them to set policy on
security (FAR) vs. convenience (TAR).

The motivation for using ROC/DET plots goes deeper:
Edward R. Tufte, a statistician and professor emeritus
of political science, statistics, and computer science at
Yale University known for his contributions to infor-
mation design and data visualization, states in Chapter
4 of his book Envisioning Information [33] that “At
the heart of quantitative reasoning is a single question:
Compared to what?”. The ROC and it variants are
likely the most effective and salient way of compar-
ing biometric recognition algorithms, data collection
methods and systems.



We note that reporting an equal error rate (EER) is sel-
dom a good substitute for a full ROC plot since the
EER is rarely a desirable operating point.

We also note existence of free software to expedite
preparation of ROC/DET curves[3, 26].

. An ROC should plot salient FAR values in an easily
legible form (e.g. log).

The scaling issue is not just cosmetic. Whatever trans-
formation is used (log, linear, normal), and whatever
quantity (FRR or 1-FRR) appears on the ordinate axis,
most applications of biometrics operate at thresholds
set to attain low false accept rates. Therefore research
papers should support accuracy comparisons in the
regime 0.0001 < FAR < 0.01. Many current stud-
ies instead plot 0 < FAR < 1 on a linear axis such that
salient low FAR values are almost invisible on the very
left edge. This is a serious fault since it can lead re-
searchers to optimize FRR at inappropriately high FAR
values. Algorithm improvements at high FAR may not
yield improvements at low FAR, as within-class and
between-class separability can be traded off algorith-
mically.

. Include threshold links on comparative
DETs/ROCs. If a DET/ROC plot includes sepa-
rate characteristics for one recognition algorithm
applied to two or more subsets, for example from
male, female populations, or from good, fair, poor
imaging conditions, the plot should include links
between points of constant threshold. The example in
Figure 1 shows excursions in both FAR and FRR for
a face recognition applied to high quality mugshots
and low resolution webcam images. DETs should
be considered to shift vertically and horizontally.
This recommendation is made because operational
systems are usually configured with a fixed threshold
but are nevertheless frequently applied to semantically
different data sets.

. ROC/DET data should be made available in digital
form. This enables re-use of the data and re-plotting of
the data in any of the ROC plot variants as needed. The
data should be available at sufficient resolution to cap-
ture the details of the curve, not just at coarsely sam-
pled FAR intervals; it should be available as tuples (¢,
FAR(t), FRR(¢)) in a text file, made available either as
supplementary data for the paper for journals which of-
fer that capability, or on a website or by email request
to the author.

. Comparative studies of algorithms, or sensors,
should be based on 1:1 (one-to-one) comparison

of pairs of biometric samples as is done in the La-
beled Faces in the Wild (LFW) [11] and the 1JB-
A [15] benchmarks and in the long running NIST
Speaker Recognition Evaluation[28]. This recom-
mendation differs from many papers which compare
probes against linear galleries. Our contention is that
core recognition accuracy can best be stated by execut-
ing pure 1:1 comparisons, and not 1:N (1-to-N) search
algorithms. Our basis here is:

e [:N algorithms can employ additional, separate
approaches - gallery normalization, indexing -
that confound assessments of the core feature-
based recognition power.

e Failure analysis[7] is easier when recognition
outcomes depend only on two samples, not N+1.

e The existence of an enrolled database, the
gallery, cannot be assumed in many real world
applications, for example via legal prohibition[8]
, or by circumstance (e.g. passport authentica-
tion).

Of course, papers that specifically address identifica-
tion technology should be exempt from this recom-
mendation.

. Implement 1:N recognition only after 1:1 accuracy

has been shown to be promising. We recommend
that most biometric technology should be developed
and assessed in a 1:1 matching mode. Only in cases
where specific 1:N technology is the goal of the re-
search, should this step be elided. 1:1 accuracy should
be estimated over K mated pairs, and L non-mated
pairs rather than a gallery. The gallery concept is only
needed in 1:N. Generally, L > K in order to support
measurement of FAR at low, relevant values with sta-
tistical significance.

1:N should be allowed of course if the study’s specific
intent is to explore 1:N search - e.g. an indexing algo-
rithm.

. CMC should not be the primary metric. The corol-

lary of the previous recommendation is that CMC is
deprecated in this context. Many papers state accuracy
as a cumulative match characteristic (CMC), which
gives the proportion of searches for which the corre-
sponding mate is found in the top R ranked gallery
identities. We recommend against such an approach.
Our motivation for this recommendation is:

e CMCs decrease with increasing gallery size N
(for example, as a Power Law[9]), and this ren-
ders algorithms incomparable unless [N happens
to be identical.
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10.

e CMC is purely a rank-based metric that discards
potentially interesting comparison score infor-
mation.

e As the CMC is estimated over closed-set
searches where each search sample has a mated
enrollment, it frequently does not represent oper-
ational reality - not everyone has a prior crim-
inal file, for example. Additionally, closed-set
tasks can lead researchers to unwittingly code
linear assignment strategies. Researchers should
use an open-set design where some proportion of
searches do not have a mate, as described above.

Disclose software availability: Any paper describing
or utilizing a method implemented in software should
indicate its availability (e.g. as open source, commer-
cial product, etc.) and how it might be acquired. If it is
not available, the paper should provide an explanation
of why it is not.

Disclose data availability: Any paper that makes use
of a dataset, including development, training and test
data, should indicate if the dataset is generally avail-
able and how it might be acquired. If it is not avail-
able, the paper should provide an explanation of why
it is not. All papers should include an ROC plot based
on one or more publicly available datasets to enable
comparisons between different algorithms by different
researchers.

In support of the recommendations regarding availabil-
ity of code and data, we turn to primary rationales
for publication — (1) to enable others to reproduce the
work and (2) to enable comparisons of results from dif-
ferent sources. Again, as pointed out by Vandewelle
the availability of code and data are correlated to the
citation count for articles containing such. As an anec-
dotal example, the Libor Masek thesis [19] is one of
the most highly cited papers in iris recognition — in
large part because it made available the source code
developed in the thesis.

Report the dimensionality and size of the under-
lying feature representation: Many approaches to
recognition involve relatively low-dimensional fea-
tures extracted from parent samples, In other cases,
models are built to represent the input signal. In any
case, the size of the data associated with a sample or an
individual should be reported with both its size (e.g. in
kilobytes), its data-type (e.g. four byte floats), and di-
mensionality (if appropriate). Such a description is not
necessarily unique; a short iris2pi template might be
described as a pair (code/mask)of 256x8 bit arrays or
a pair (code/mask) of 256x1 byte vectors. For the case
of proprietary algorithms a detailed description may

not be available. Size is important to system design-
ers faced with storage and transmission of data across
interfaces, buses, or networks.

11. Report on the computational efficiency: While pre-
cise timing of an implementation is subject to many
systematic effects, papers should include coarse esti-
mates of duration of the feature extraction and compar-
ison functions, and should identify the hardware and
software used. Where relevant, training time should
also be provided. These metrics are important in any
attempt to reproduce the work.

3. Proposal for a Generally Available Set of
ROC plots

An author attempting to implement our recommenda-
tion to compare their results against baseline and state of
the practice results might reasonably raise the question of
where they can obtain ROC data for such a comparison —
they might not have access to the baseline or state of prac-
tice algorithms. We propose an answer based on the avail-
ability of data in the NIST Face Recognition Vendor Test
(FRVT) [24], Proprietary Fingerprint Template Evaluation
(PFT) [27] and IRis EXchange (IREX) [25] programs.

We suggest that all groups (e.g. NIST, International Bio-
metric Group) involved in large scale testing of biometric
algorithms make ROC data from such tests generally avail-
able to the community in machine readable form. At this
time, we recommend inclusion of face, fingerprint and iris
modalities. For each modality, we recommend publication
of ROC plot data in machine readable form for current, state
of practice algorithms, as well as one or more open source
algorithms. For preparation of this data, we recommend
the use of both large, realistic, operational, sequestered data
sets such as those used for the FRVT, PFT-II and IREX pro-
grams, as well as several of the smaller, publicly available
datasets such as:

e Face:

1. NIST Special Database 32[4]
2. NIST /1IB-A[15]

e Finger: NIST Special Datasets 14 and 29 [23]

e Iris: CASIA-Iris-Thousand [2], IrisBase [12]

The authors are accepting suggestions on details from
the community at large, including recommendations on
public datasets and open source algorithms. Suggestions
can be directed to the first author with a subject of the form
“ROC plot Suggestions: <your description>".



4. Some Technical Complications

Both the DET and ROC carry the implicit assumption
that the comparisons made at every threshold are inde-
pendent, identically distributed (i.i.d.). Of course, in the
real world this is never the case. Models of large-scale
performance of biometric systems under this assumption
have been proposed [36]. The approximate accuracy of the
i.i.d. model for large-scale systems constructed to perform
searches of a large database of N samples as N sequential bi-
nary comparisons was established in Section 5.4 of Wilson
[37]. More advanced models have been suggested which
assume that the comparison scores have distributions that
are not identical, but vary based on the two samples being
compared [30].

Significant complications arose with the adoption of an
international standard for reporting biometric performance
[13]. This standard allows the redefining of false negatives
and positives around the concept of a candidate list. The
false negative identification rate (FNIR) was defined as the
proportion of transactions by users enrolled in the system
in which the user’s correct identifier is not among those re-
turned on the candidate list. The false positive identification
rate (FPIR) is defined accordingly. The criteria required for
an identifier to be returned on the candidate list will be sys-
tem dependent and may require a comparison score above
a threshold and a ranking of the score against all compari-
son scores to be below some cut-off value (listing identifiers
with the top P comparison scores). Consequently, when
an ROC or DET is plotted using these definitions of false
positive and false negative, the plot becomes a function of
the threshold, the size of the database, N, and the particular
value of P chosen. Consequently, the plot does not neces-
sarily converge as the size of the database and number of
comparisons increases, and to date, we lack good models
relating FPIR and FNIR to N, P and threshold. Some re-
ports [10] plot error rates in simple threshold, while others
[37] plot error rates using the candidate list criteria, as a
function of database size, ranking cutoff and threshold. The
meaning of the DET or ROC under the candidate list con-
ceptualization must be interpreted accordingly.

In the context of this paper, we consider two generic
classes of matching tests: 1:1 and 1:N. In a 1:1 test a single
biometric sample is compared to another single biometric
sample and a match score is reported; the match threshold
is not normally supplied to the match function. The process
is repeated for K mated and L non-mated pairs. Using the
reported scores and the ground truth for the pairs, we can
construct the mated and non-mated score distributions and
from those distributions construct an ROC plot using the in-
ferred false match and false non-match rates as a function
of the match threshold.

For the 1:N case we compare a probe biometric sample
against a gallery of N reference samples, possibly specify-

ing a match threshold on the call to the function implement-
ing the 1:N match. The return values from the call depend
on the algorithm implementation: a failure to match flag, a
vector of all the match scores, the single best match score,
and possibly some other variants.

If we can compel the 1:N matching function to return,
for each probe, the scores for the top M matches in the
gallery, we can set the returned number to the number in
the gallery — thereby getting the match score of the probes
against all N of the samples in the gallery. This generates a
pseudo 1:1 result that can be combined with ground truth to
generate mated and non-mated distributions. This presumes
that we know enough about the implementation of the 1:N
logic to be assured that each of the returned scores is the
result of the same comparison operation: that the match-
ing function is not taking advantage of its knowledge of
the N comparisons to modify individual comparisons, e.g.
by renormalization of scores. Hence, in some 1:N cases,
given an adequate model of how the 1:N machinery is im-
plemented, we can recover distributions corresponding to
1:1; in others, we cannot. For our proposal, this has impli-
cations for use of 1:N data and algorithms from large testing
projects. This is an issue that will need to be considered in
more detail as we go forward.

For the ROC plot and table presented in this paper, we
limited ourselves to data from 1:1 tests, and recommend do-
ing so whenever possible.

5. Example Graphic

Figure 1 is an example of the type of figure we are rec-
ommending. The data in figure 1 and in table 1 came from
FRVT [24]. Tt represents a comparison of two different
types of face data: mugshot and webcam with the same state
of the practice recognition algorithm.

The figure illustrates several presentation best practices
that should be noted:

e The data is plotted logarithmically so that the often
most important region in the bottom left can be eas-
ily understood.

e Points with equal threshold values are indicated.

e The data being compared is plotted on the same
graph; when plotting multiple graphs, use the same
scale/aspect ratios, so that they can be easily com-
pared.

e The legend uses both color and line type to make it
possible to distinguish the lines when reproduced in
black/white or if the reader is color blind (several per-
cent of the population).

In accordance with our recommendations regarding
statements of data and algorithm availability we note: (1)



The datasets on which the figure and table are based are
not generally available. They are from the sequestered data
used for NIST tests and for which we have no authority to
redistribute. (2) The algorithm used is one provided by a
vendor in the recent FRVT-2013 test reported in NIST-IR
8009 [9]. The terms of the algorithm license preclude dis-
closure of the vendor details.

We used this data and algorithm, in part, to illustrate
an instance where the data and algorithm cannot be made
available — but where those facts should never-the-less be
disclosed.
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Figure 1. ROC plots comparing a state of the practice face recog-
nition algorithm on two different data sets. The straight lines join
points of equal threshold. See table 1 for a data listing.

6. Summary

We presented several suggestions for improvements in
the preparation of biometric papers that center around ap-
propriate use of ROC/DET plots to enable comparisons of
the the performance of biometric recognition systems, in-
cluding algorithms and data acquisition. To facilitate such
comparisons, we propose implementation of a repository of
ROC/DET data that includes results from open source base-
line algorithms as well as state of the art commercial algo-
rithms using both public data sets and large, operational,
sequestered datasets. We look to the community for recom-
mendations on which baseline algorithms and public data
sets should be included for each of the major modalities:
face, finger, iris.
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Table 1. ROC data for figure 1. The data has been interpo-
lated on a grid to fit into the space available. Contact authors
for the full data set. Columns 2 and 3 are FNMR; columns
4 and 5 are thresholds.

FMR Mugshot Webcam WebCam-t Mugshot-t
0.000001 0.158 0.835 3971.0 7646.3
0.000002 0.145 0.792 3823.0 7109.2
0.000004 0.129 0.750 3669.7 6645.8
0.000008 0.118 0.708 3521.3 6220.6

0.00001 0.115 0.691 34725 6082.5
0.00002 0.103 0.638 3325.1 5695.5
0.00004 0.087 0.581 3180.2 5335.0
0.00008 0.081 0.524 3038.8 5001.4
0.0001 0.080 0.508 2990.0 4905.1
0.0002 0.072 0.447 2850.3 4608.5
0.0004 0.064 0.399 2713.2 4330.1
0.0008 0.056 0.345 2579.3 4067.1

0.001 0.052 0.327 2536.5 3984.8

0.002 0.043 0.278 2406.9 3736.4

0.004 0.038 0.230 2281.9 3497.6

0.008 0.034 0.185 2164.7 3266.7

0.01 0.033 0.171 2124.2 3193.7
0.02 0.028 0.134 2012.1 2971.1
0.04 0.023 0.101 1906.4 2752.2
0.08 0.016 0.069 1807.4 2535.1
0.1 0.014 0.059 1775.9 2465.2
0.2 0.010 0.035 1680.9 2245.2
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